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HILBERT MODULAR FUNCTIONS

AND DIRICHLET SERIES WITH EULER PRODUCTSf

Oscar Herrmanh

Blumenthal [1], at the iInstigation of Hilbert, investi-
gated a generalization of the ordinary modular group which is
now known as "Hilbert's Modular Group" on the basis of a
totally real algebraic number field. Blumenthal dealt only
with questions of algebraic function theory. The modular
forms for a number field of arbitrary degree were introduced
by Kloosterman, after they had already been applied by Hecke
[2], for the special case of real number fields of degree 2,
to the solution of number theory problems. An estimation of
the order of magnltude of the Fourier coefficients of modular
forms is drawn from Kloosterman's investigations [3]. Two
works of Maass [4,5] were concerned with generalized groups of
the form of Hilbert's modular groups. The major result was to
establish the finiteness of the rank of the family of all auto-
morphiec forms of a glven dimension, given certain constraints

on the fundamental domain.

Hecke's [6,7] theory of T-operators was extended Dy

de Bruijn to modular forms of Hilbert's modular group. But
since there is not a totally positive generator for every prin-
eipal ideal, de Bruijn was able to construct a closed operator
theory only by composing a modular form from 2" analytic func-
tions defined in different regions. His operators satisfy a
multiplication theorem of the type found in Hecke's theory

of rational modular groups. But since de Bruijn's modular

forms possess Fourier coefficlients only for eguivalent

+Dissertation submitted to the Faculty of Science and
Mathematics at the University of Heldelberg.

#
Numbers in the margin indicate pagination in the forelign
text.
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quadratic integer ideals, he was able to define T-operators
only for the equivalent quadratic integer ideals. The corre-

sponding Dirichlet series are thus of the form

Dis, ) = %‘ ¢ (m) 2 (m) N{m)~*,
summing at most over all equivalent quadratic ideals. An
equivalent quadratic ideal is an ideal which differs from an
ideal square in at most one principal ideal. Since the unique
factorization theorem does not hold in the domain of the equiv-
alent quadratic ideals, such a Dirichlet series possesses 1o
Euler product expansion in the case where the class number h
is even. Since the group used by de Bruijn as basis has no
discontinuous expansion, there are no Dirichlet series with
Euler products for de Bruijn's modular forms in spite of the
multiplicative properties of the T-operators. In the present
work, vectors are constructed from modular forms in h differ-~
ent groups of the form of Hilbert's modular groups. A theory
analegous to that of Hecke and Petersson 1is developed for

thege vectors.

The groups which are taken as a basis can best be de-
scribed with the aid of ideal numbers. The definition of the
ideal numbers and their most important characteristics from
the point of view of applications are collected in §1. At
this point, we will state only that the domain of all 1deal
numbers can be split into h classes Kl = K, KE’ cany Kh’ the

absolute number classes. In §2, each number class is assigned

- (35)

The investigation of these matrix systems 1is extraordinarily

a system P(Ka) of matrices

complicated because they are in general not even semli-groups.
The multiplications permitted in the matrix systems P(Ka) are
described in Lemma 9. For the theory of T-operators, the

most important result of this section is Theorem 1, in which

/358



systems of representatives are gilven for the left classes of
the matrices M E'T(Ka) with determinant ¢ = ad - By accord-
ing to the group Pl(Ka) of all matrices in P(Ka) with deter-
minant equal to 1. In §3, every matrix M in I'(K,) 1s assigned
a slmultaneous system of linear fractional substitutions. The
substitution group Tl(Ka) corresponds to Ghe group Pl(Ka).
Disregarding the finite number of hyperplanes which are the
limiting spaces, the group fl(Ka) is disecontinuous in the en-
tire n-dimensional number space in the domain of complex num-
bers. Tgis space is divided by the limiting spaces %nto of

regions Tw (w € Ka). The union %K of these regions Tm’ that
a
is, the entire space without the limiting spaces, becomes a

representation of a system of abstract metric manifolds
through the introduction of a metric. The determination of a
fundamental domain with simple characteristics for the group

fl(Ka) with respect to T, follows a method which is a com-
a
bination of those of Fricke-Klein [9] and Maass [4]. The

fundamental domain of the group fi(Ka) with respect to TK
a

decomposes into ot subdomaing; each possesses exactly h
apexes, is connected, and is bounded by a finite number of
hyperplanes in the directlion of the metric (Theorem 4y, Since
the main emphasis of the investigations lies in the area of
function theory, several supplementary observations on the
construction of the fundamental domain are left to the reader.

Automorphic forms of dimension —l{{L{being a natural

number), on TK are observed. Since TK decomposes into ot
a a
separate regions, these automerphic forms, the Hilbert modu-

lar forms for the class Ka’ consist of o separate functilon
branches. De Bruijn has already investigated such functions
for the special case of Ka = K. A modular form for the class



K, of dimension -k must be of type (Ka, -k), and (Ka, -k) . /3589 .

would denote the family of all modular forms of this type.
The family (Ka’ -k) is of finite rank (with respect to the
domain of the complex numbers), and may be represented as a
direct sum of the families (Ka, -k, x), where a modular form F
of the type (Ka? -k) is a modular form of type (Ka’ -k, ¥x)
whenever F(et) = x{(e)F(1) is valid for every unity e and x 1is
a biquadratic character of the unity group. Not every bil-
quadratic character of the unity group has a corresponding
modular form of type (K, -k, ¥). The necessary condition for
this is X(Ez) = Ne_k, and a character x which satisfies this
condition 1s ecalled an admissible character. The admissible
characters are continued to characters of the group Zx of all
non-zero ideal numbers. The T-operators for modular forms of
type (Ka, -k, x) are defined by

Tg,(0}=N(o)}*-1 % (0) Zi'IRu‘,'

Py

where the R“'s constitute a complete system of representatives
for the left classes of matrices in P(Ka) with determinant o,

according to Theorem 1. The operator TK_(G) maps the family
5 :

(Ka, -k, X) onto the famlly (o, Kg, =k, x). Thus the iteration
of T-operators is possible only whén the class displdcément is
taken into account. Thus the T-operators are in general not com-
mutable, Neverthelgss, a multiplication theorem can be proven,
and it is in some-ways simiiar to-Heéké‘s-[7j hﬁltipi{cation
theorem for T-operators for modular groups of higher order.

In order to give a clear overview of the multiplicative
properties of the T-operators, we construct the form vectors
f ='{FK (1)} of the type {K, -k} each from h forms of type

a

(Ka, -k){a =1, 2,...,h}. The decomposition of the families
(Ka, -k) into the subfamilies (Ka, -k, x) is carried over to



the family of all form vectors F of type {K, -kl}: this family
decomposes into the families {K, -k, x}. For these families,
the T-operators T(¢) are defined by a component-by-component

application of TK (g) and rearranging so that the a-th com-
a

ponent of §|T(o).again belongs to the class Ka‘ The T-operators
for the form vectors are commutable. The multiplication for-
mula is especlally simple when we limit ourselves to certaln
subfamilies {K, -k, %, ¢} of the family {K, -k, x}, where ¥

is a character of the number class group. For these sub-
families, the multiplication theorem (Theorem 7) for the T-
operators 1is

(DT = 5 T(5EINGF- ).

1!9}(‘2‘-)'.0)
The family {K, -k,x} is the direct sum of the subfamllies
{K, -k, ¥, ¥}. The investigation of the Fourier coefficients
of the form vectors leads to a perfect analog to the theory
of Hecke and Petersson: The Fourier coefficients c(g) of a
form veetor of type {K, -k, ¥, ¥} which is an eilgenvector of
all T-operators, conform to the multiplication formula

e@elo)= T oGN3 p@).
1165(2','0) ’ ’

~
LUS]
(@A
o

In particular, the following is thus valid:

|

cElel@=¢So)  for (T,0) =1

that 1s, e¢(o) is a multiplicative functlon {(with respect to
relatively prime arguments). The 1nverse is also true: A
form vector F of type {K, -k, X, ¥} whose Fourler coefficients
are multiplicative is an elgenvector of all T-operators. The
family of cusp form vectors of type {K, -k, ¥, ¥} 1s spanned
by eigenvectors of all T-operators. There are no further
elgenvectors in the family of cusp form vectors. In the sub-
family of {K, -k, ¥, ¥} which is normal to all cusp forms of



this type, there is at least one eigenvector of all T-
cperators, glven that the subfamily is non-empty. Nothing
further is known about this subfamily, although one suspects
that, when non-empty, 1t is spanned by exactly one Eisenstein

rrow vector.

The Mellin transformation asslgns to each form vector,
uniquely and reversibly, a system of Dirichlet serles with
magnitude characters. These Dirichlet szerles define integral
functions, except for a finite number which have a pole of
order 1. They possess a functional equation whose structure
is known. Ry the classical method, and with the aild of the
Mellin transformation, this functional equation 1s reduced
to a transformation property of the form vectors. The Dirich-
let series

Ds, A) =(%‘ c(a.)/l{o) MN{g)-*
are linearly equivalent with those found by the Melllin trans-
formation. They have a canonlcal Euler product expansion

Dlo. )= I (1 - (@ A@N (@ *+ plg) Nl -1-2)-1,
(‘)

whenever the form vector Fois an eigehvec%br 6f’£ii“T:%
operations. The product extends over a complete system of
non-assoeciated prime numbers p. They are the only Euler pro-
ducts which can be found for form vectors of the type

K, =k, ¥, V).



CHAPTER I /361
THE GROUP THEQRY BASIS

§1. Ideal Numbers

Let K represent the totally real algebralic number field
with (absoclute) ideal class number h and degree n which we
will use as a basis. Let the n conjugates of K be K(V)

(v =1, 2,...,n). Following Hecke [10] we now construct over
K a reglon Z of ideal numbers with the following properties.
7 is the smallest region which includes K and in
which not only multiplication and division, but also

the construction of the greatest common divisor (G.C.D.),

are always possible, with the supplementary condition

that all unities contained in Z also belong to K.

These conditions define Z unambiguously to the point of
isomorphism. We will in some way continue the isomorphs
K+K(v) to 1somorphs of Z onto conjugate regions Z(v)

(v=1, 2,..., n). According to this stipulation, every ildeal
number o € Z possesses exactly n conjugates a(V) (v =

1, 2,...,n), some of which may of course be l1dentlcal. Since
the regions Z(v) are embedded in the field of complex num-—
bers, the sum and product of ideal numbers with arbitrary com-
plex numbers are defined. The sets of all non-zero ideal
numbers in K or Z are denoted by K* or Z2~. The classifica-
tion of the non-zero ideals into h classes is carrled over
onto Z: Z* decomposes into h classes K* = KI, K;,...,Ké
[Translator's note: Handwritten correction appears in text

for last term: Kﬁ.],the absolute number classes.

Combining these classes K; with the number 0, we get the
classes Ka(a =1,2,..., h) which possess a non-empty inter-
section. Thus the principle of equivalence which corresponds

to this classification of Z



o ~ B for a, B & Ka

is not transitive; o ~ y follows from o ~ B, B ~ y if and only
it g8 # 0.

Let the symbol (al, PERR ar) denote an arbitrary
G.C.D. of the numbers Gps Qgseees a,- The G.C.D. is unambigu-
ously defined down to a unity e. More speciflcally, (o) de-
notes an ideal number which differs from a by at most one
unity. An ideal integer is an ideal number which 1is also
totally algebraic. As usual, let a/B [Translator's note:
Handwritten correction appears in text: B/c.] denote that
o .

g is an integer.

For later use, we now present several lemmas from the
arithmetic of ideal numbers over the field K. Proofs of most

of the lemmas can be found in Hecke [10].

Lemma 1: The sum of two non-zero ideal numbers

&, B is an ideal number if and only if a ~ 8.

Lerma 2: If w € 2™ and K, is an arbitrary class of
ideal numbers, then there are n ldeal numbers Qys Cns
& & & 5

Oy such that each ideal number a € Ka can be ex-

pressed unambiguously in the form
K=oyt ag iyt a,m,
with rational coefficients m, and such that w/a is valild

only when all m's are rational integers.

Lemma 3: If w,a € 2% and if w/a, then there ex-
ists another number y in the class Ka such that w =
(a, v).

Lemma 4: The ¢.C.D. w of two numbers a,y € Z°°

¢an always be written as a linear combination of o,y with

/362



integer coefficients A,u € Z: w=da+uy

Furthermore,

1] o
1"'?.#""?.'

A congruence of ildeal numbers
x= f{n)
with p # 0 indicates that gﬁé is an integer in Z. Equally,

B

o,B are equivalent and Eﬁ— is an integral algebraic number.
The following lemmas are true for congruences of ideal numbers:

Lemma 5: A linear congruence
wé=p(w
possesses a solution for all & € Z if and only if
(o, 1) /8. It is mod u uniquely solvable when {a,p) = 1
holds. 1If a,8€ 2z, then £ ~ 2.

Lemma 6: A finite system of congruences with pair-
wise relatively prime modules 1s simultaneously sclvable
if each congruence possesses a separate solution such

that all separate solutions are equivalent.

Lemma 7: If u and ¢ are any integers in Z%, then
there exists 1n every prime residue class mod p an lideal

integer which is relatively prime to ¢.

Lemma 8: Let u € z* be an integer. Then there ex-
ist in every class just as many mod u incongruent ideal
integers. Let this quantity be denoted by N(u).

If pw is any ideal number, let Nﬁ denote the product, SuP;
the sum-of its n conjugates. If p e K, fthen Nu,Su are rational
numbers. Otherwise, Ny differs from a rational number by at



most one root of unity. If w is an ideal integer, then the

quantity N(u) introduced in Lemma 8 is equal to |Nu|. Let

U € K. Then there is a number 3 € Z (uniquely defined down

to some number €), such that Su is an integer if and only 1if
9u 1s an integer. This number 3 is called the differential

of K. 4 = N(38) 18 the discriminant of K.

Up to now, we have been concerned only with the
{absolute) partition into classes. Next we observe two finer
divisions in 7°.

Two ideal numbers a,B € Z° are called equivalent 1in the
more restricted sense 1if % e K* and there exlsts some number

e such that 2e is totally positive. We write a = . The

B
correspond}ng number classes are denoted by Ra’ the class
number by h. This classification is also applied to the
ideals. This is not the case, however, for the most narrow
partition which corresponds to the following definition of

equivalence: Two ideal numbers a,B € 7* are equivalent in

the most restricted sense when a ~ f and & 4s totally positive.

g
We write o = B.

Expressions such as oK and Kz Kﬁ_l are to be interpreted

according to the complex calculation familiar from group

theory. Thus K;1 is not defined, as 0 € K, has no inverse.

We therefore define K;1 as the set resulting from the joining
of 0 to KX™'. Then it is clear that kb= k k7N

10

~
18]
[
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§2. The Arithmetic of Two-row Matrices with Ideal Numbers

In this section, we investigate two-row matrices M =

y
ditions

(a g) whose elements are ideal integers which fulfill the con-

@ €K, e K7 K, y€ K, 8¢K, (1)
and whose determinant 1s
o=ad~By+0 (2)

The set of all matrices M which satilsfy these conditions for
fixed Ka and arbltrary Kb we denote by T(Ka). If all elements

of a matrix M are non-zero, then (1) becomes

ek, %, FeK,. (3)

- 4
Condition {(3) seems more natural than (1), but it is not use-
ful when an element of the matrix M dlsappears. It is immed-
iately obvious that ¢ € Ky is valid. The matrices M € F(Ka)
do not form a group, and, where h # 1, not even a semigroup.

All that we can say ist

Lemma 9: If M € P(Ka) and ¢ is the determinant of
M, then MM' € P(Ka) where M!' "is an arbitrary matrix from
P(U'lKa).

The proof is obvious when one observes that the number
classes are groups with respect to addition. Products other than
those named in Lemma 9 do not generally represent matrices with
elements from Z and are thus not treated.

2\
p) € P(Ka), whose

determinant Ap-uv is equal to 1 ;form a group Fl(Ka). We ob-

We observe that all matrices L = @

tain an overview of all groupsiln F(Ka) which comprise
Pl(Ka). The unity groups appear in the process. As a gen-

eral convention, let <%? denote a unity group in K whenever

11



€., represents an arbitrary element of the group. Next let

1
FE (Ka) be the set of all matrices L € T(Ka) whose determinant
1 k
is in <£i>. The sets FE (Ka) are groups!the only groups in
1
F(Ka) which comprise Pl(Ka). In fact, if one starts with an

arbitrary group r ¢ F(Ka) and assigns to each matrix L 1ts
determinant as an image, then the resulting projection is a
homomorphism of the matrix group onto an integer multiplica-
tive group. But this is a unity group <ei>. Thus there 1is at
least one L € T with determinant €4 for every £y If in

addition Fl(Ka) € I', then all matrices with determinant ei are
clearly included in the group Tq; that 1s,T = T_ (Ka)- From

‘ 1
now on let e denote an arbitrary, Eq 2 totally,positive arbi-
trary unity in Kl'

Lemma 10: If FEl(Ka), F€2

FI(KG) C Frl(‘Ka} C Ft. (Ka)v

(Ka) are two matrix groups

with

then I'  (K_) is the self-conjugate subgroup of T_ (K_)
e, & €, 8
and the following isomorphism is wvalid:

Ta(Ka) _ (e2)
P‘a(Kﬁ} = (51} )

The proof follows immediately from the second law of isomor-
phism 1n group theory when one observes that the kernel of the

homomorphism L + ¢ is the group I (Ka).

From Lemma 10, wlth € and €4 in the designated roles, we

derive:

Lemma 11: The groups I (K ) and T _2(K_ ) are seif-
€ a €q @

conjugate subgroups of PE(Ka), of finite 1ndex and

12
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possessing an sbelian factor group. The followlng is
valid:
(Fe (K): Tea(Ko)) = 27, (Te(Kp): Iep (K,)) = 22

where n = g s 2n-1. The factor groups are of the form
(2,000,2) O (2,002, 0,...,4).
The proof 1s clear when one considers the corresponding
unity groups, for which the theorem is known to be valid.

Let a matrix M € T(Ka) whose determinant differs from o

only by a unit be called of order (o). In particular, the

2 s
matrix I = t g with determinant of an arbitrary unity, has
order (1). In tne future, we will use the notation L =

(t g)only for matrices of order (1). Matrices of order (1)

are palled unlmodular matrices. If the determinant of the

matrix L is actually 1, then L is properly unimodular.

Multiplying the matrices M & F(Ka) of order (o) from
the left by matrices € Tl(Ka), and from the right by ma-

trices € F(o‘lKa), ylelds product matrices which, according
to Lemma 9, are also matrices from F(Ka) of order (o). This

leads to the following definition:
Two matrices M,M! € F(Ka) of order (o) are called
left-equivalent or right-equivalent

when there is a matrilx
-1
L e Tl(Ka) or L € Pl(U Ka)

such that

LM = M or ML = M'.

13



We wrilite

M 1 M! or Mr M',

Since the unimodular substitutions of each class form a
group, these equivalence relations are reflexive, symmetrical,
and transitive. Thus they motivate a partition info classes.
For the definition of the T-operators, we need a complete de-
scription of the left partition; the right partition is less

important.
Lemmg 12: If o, o', v, v' are ideal numbers with

o, o' € K,

. VK (o, y} = (& ¥") + (0),

then there exists an L EEFl(Ka) such that

'y . ay -
(:’:)=L(?) (4
Proof: According to Lemma 4, w = (o, y) is a linear com-
bination of @, y with linear coefficients; thus this 1s also

valid for every multiple of w, such as o' and y'. Thus there
exist integer ideal numbers Al, His Vis Py such that

o' =hatmy
Y=natey

€K, v, €K e k71

and such that 2 1 a? "3 a ° Set

1 P1
J.=11+‘Jf§, Fﬁh—a&-r‘
v=v—y7  e=etan

-1

where £ EKa R

that

n €X. Choosing the proper £,n we c¢an assure

na +Ey =1— (o)

14
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and that A, ¥, v, p are integers. But then L =

AN ‘ . . \
(v p) ezFl(Ka), and (4) is satisfied.

If n, kK, p are integers from z¥ and if Ka is an arbitrary
number class, then the matrix M =($ g)kEP(Ka) is called "of
| | “
the form {n, k, 0, Ka}hif the followlng 1s truel Translator's

(ay), K=(B,8)]:

note: The followling 1s handwritten beside 1.: n

1. nf(«, y), e /(8. 8},
Da=ad—~ By, {o)=nK

We wrifte

Mé{ﬂ, K 6, Ko}'
A fixed matrix of the form {n, k, g, Ka} whose choice is not

critical is denoted by R{(n, k, 0O, Ka).

Thig definition leads fto:

o 8

Lemmsa 13: If M = Y 8

) is a matrix of the form
{n, k, o, Ka}, then
n= (e, vy) and x = (B, &).
Proof: We know that ¢ = ad—By; thus
(o, 7} (B, 8)[ (08, B ) (@6 — B y) = (0).
This leads to

(my) (8.0 [(o)
.9 K /nK !

from which the proof 1s clear.

Lemma 14: If n, k, ¢ are Integers from 7¥ with 366

nk = (o), and if Ka is an arbitrary number class, then

15



there exists a matrix of the form {n, x, o, Ka}.

Proof: According to Lemma 3, there exist two numbers
o €K, ¥ EEKa, such that n = (a, yv). And, from Lemma 4, there
exist two integers A, u such that n = Ao + uy. With & = kA,
R = —xu, we get:

M (:g) (K 0, Ko}

Lemma 15: If M is a matrix of the form {n, x, o, Ka}
then a matrix M' € T(Ka) is left-equivalent to M if and

only if M' is of the same form.

Proof: 1. Let JI:(:?)E{’?’K"”K«:}'L‘—'(ig)“';(ffa)r and let

, ha+py Ap+pd -
-z = e €T K.
Then clearly M' € {n, k, 0, Ka}.

2. Conversely, let M and M' be placed in {n, x, o, Ka}‘
Then, from the definition of Tl(Ka), we have:

Cfatd—fy fa-—a'f
L=MM1= a 3 .
L=M M1= (y'ﬁ—d'y 6,0‘*?,‘3)6111(]1,,),

o g

Thus M’ i M, and Lemma 15 1s proven.

Lemma 16: Let M =(§ g) e'F(Ka) and o = ad—BYy.

Then there exist two 1deadl integers n, k € Z*, one 1deal
number g € oK;l with %/t , and a corresponding matrix
‘ - C. r . {1¢
0 € {n, x, o, Ka},'such that M = M U~ where U (O 1)_
For a given M, {n, k, 0O, Ka} is uniquely determined and&\

M

mod K is?uniquely determined.
n

16



Proof: Let n = (a,y). We will choose a number y' € KZ
with o/v'. According to Lemma 3, there exists a number
a' € K such that n = (a', yv'). According to Lemma 12, there
exists a matrix L € Tl(Ka) such that

Thus the matrix

M = (m:ﬁ:) =LM
¥ &

satisfies the conditions o/y' n = (a', ¥'). ¢/a'd' follows
from o/y'. But a' and ¢ have a G.C.D. n, because otherwise

we would have (a', ¥') # n. Thus k = %—/6'. We choose a num-

ber T € g—! Kal with

.';E“("]n‘)' a L= f)- -

This is possible because the congruences

Ee=0(x ), é= (k) (6)

are individually solvable with £ € ¢ g1

and have relatively /367
prime modules. According to Lemma 6, the congruences in (6)
are thus simultaneously solvable. If £ is a solution of (6),

then ¢ = % is a solution of (5). Then clearly
" ’ —_ o ﬂ'—ﬂ'c
M =T ~_(y, 6._?,5)6{1],&0,1((;}-

We have M = L1

" tym € {n, ¥, O, Ka}' Since the elements in the first col-

M"Uc, and according to Lemma 15 My =

umn and the determinant are not affected when right multi-

plying by u%, {n, k, o, K.} is uniquely determined.
a

17



A11 that remains is the proof that ¢ mod %- %Buniquely
determined. It is sufficient to prove that:

t Rt
If M = ($ g) and M' = ($, S,) are two matrices t;rem the form
A{n, k, o, K } and if

M=MU, (7)

then £ /¢ is valid. But this is clear because (7) yields:
n

’=d, ﬁ'=ﬁ.+a-i::
V=9, &=06+pL

and thus k/(az,vyc) = nr, and the lemma 1is proven.

Theorem 1: If ¢ 1s an integer from Z2*, then a com-
plete system of representatives for the left classes of
matrices M € F(Ka) with determinant o is given by:

Rk, 0, K,) US,
where (n) traverses a complete system of non-associated
divisors of ¢, and where k 1s determined by nk = 0.
T E0 K;1 traXerses a complete system of mod % differing
multiples of > [Translator's no;e: Handwritten correction
appears in text for last term: ﬁ] for fixed n,k. The

number of these left classes 1is given by

2, Nx).

(n}
The first part of the theorem follows directly from the

lemmas already proven. The second part-follows from_simple

enumeration.

Definition: Two matrices M,M' € F(Ka) of order (o)
are called absolutely equivalent if there exist matrices
-1
1
L e Pl(Ka) and L' € Tl(c Ka) such that
MeLML

The notation used is M'F? M.

'
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Theorem 2: Two matrices M,M' € F(Ka) of order (o)
are equlvalent if and only if they have the same deter-
minant and the same G.C.D. The G.C.D. of a matrix 1s
understood to be the G.C.D. of its elements.

Proof: 1. It is clear that equivalent matrices have

identical determinants and identical G.C.D.'s

~
L8]
o
o

2. To prove the inverse, it suffices to show that an

|

arbitrary matrix M with determinant ¢ and G.C.D. ¥ is eguiva-

o]
\ 9’
the G.C.D. of the matrix M 1s not always within the domaln,

lent to a previcusly determined matrix B ¥ ,0,K Since
we cannct confine ourselves to primitive matrices without mak-

ing the condition in (1) more general.

Mo & B
Let M “'(:Y 8

with o/y' and a' € K where (a,y) = {(a', v'). There exlsts a

and 9 =(o,B,Y,8). We choose numbers y' € K/

corresponding matrix L; e Pl(Ka) such that

e (T
M =L1Mm(?,6,)

We set
o prd pge r; a” B . o' 4 Ay ﬂ'+lé‘+vm‘+).vy‘)
2 MUMU_(?,J,,)_( " e

1

with integral A, v where A € K;l and v €0 K; (which we will

have occasion to use again later) and p = (a', &§'). It

follows that u" ﬁr);— ws'&.ﬁ'::(ﬂ"r _ﬁx, o, ?f),

hecause ¢ is a linear combination of a', B' with integral co-
efficlents. We also know that

M, f)= (<. 08, By, 0)=1.
and thus

L

&< By

19



The wvalues
E=F+Ad+re

traverse all numbers which are congruent mod u to B' when
A, v lndependently traverse all integers of those classes.
There exlst numbers A, v such that ¢ = (£, yv'}. This can

be proved by dividing the two conditions
E=F (), (6, y) =
by ¢ and applying Lemma 6. But then
By =+ vy, y) =, y)=9.
It follows that
(#3) - -

In fact, we have
(6" 5)[ v -2
and
(s
This yields the solvability of the congruence
pums ()
1

for integer n €0 Ka’ that is, there exists a n € c_lKa such

that ' :
Afrer a' ﬁ” a’— 7 ﬁ”. ﬁ'.’ ' n( 1 0)
A =(V”5J$(V~03“WJ_JL —n1

gatisfles the condition g%u'". This yields o/B"y'", and,

R & i B I .
finally,ng"’=a , beeause 533" . Thus MmmE {gya,p,Ka}. Since

134

all matrices of this form are left—equivaleht,“M can be

transformed into the representative R by left-multiplying

20
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with a properly chosen matrix Lg. An application of this

general theorem yields:

Lemma 17: Let RO be a fixed matrix of the form
Ho, o, OQ,GKa}. There exlists a corresponding system of

representatives

RqsRys .-k, where =X N@.

J ©®)
of the left classes of matrices from T(Ka) with deter-

minant ¢ such that the matrices
RoRfl»RoREI!""RURa‘_I
constitute a complete system of representatives of ma-

trices from F(Ka) with determinant o.

Proof: Let the matrices Rﬁ € T(Ka) and R; = T(oKa) be
two systems of representatives of matrlices with determinant o.
Wé can assume without restrictions that two matrices with the
same index possess the same G.C.D. Thus the matrices ROR&‘I,
R; have palrwise the same G.C.D. According to Theorem 2,
they are equivalent, that is, there exist two matrices
L&, Lﬂ for each p such that

R Rl1=L,R,L,

Thus the matrices LERH constitute a complete system of repre-
sentatives of the left classes of matrices with determinant o

of the sort required by Lemma 17.
0f course this lemma can also be formulated asgs follows:

Lemma 17a: There exists a common system of rep-
resentatives of the left and right classes of matrices

M ezF(Ka) with determinant o.
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§3. Substitutions and Substitution Groups

We now leave the domain K to investigate its n conjug-
ates K(l), K(E),..., K(n), which, according to our established
conditions, are all real. We assign to each domain K(V) a
complex variable T(V)(v =1, 2,...,n). These variables are
the conjugates of 1. Because the regilons Z(V) are embedded
in the domain of the complex numbers, multiplication of ideal
numbers with arbitrary complex numbers is defined. We now
establish the convention that an equation or an inequality
which includes numbers from K and the variable T represent a
shorthand for the system of conjugate equations or in-

equalities.
This means, for instance, that the substitution /370

a1 = —q_.‘:jtﬁ
T ‘Mr_yt+6" (8)

where M = C%%) denotes a matrix with elements from Z which is

analpgous to the systenm

¥ c ot () [ I L R LN A
70 o 0 e M = .. (9)

(v) (v
The matrix M(VL "-thv) S(V) is called the v-th conjugate of M. For
Y

x € K, the inequality o > 0 is identical to the system o > 0
(v =1, 2,...,n); that is, a > O means that a is totally posi-
tive. o € K was stipulated to insure that all conjugates at

a would be real,

We compute Im w't' for MIEF(Ka) and wtE K;:
Im o7 = Im o 25EE
lyz+of"Im o' avt gy 37+6).

N
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This can be written as

Ime't =lyz+d-2In o' @8- f7) v
=lyr4+-2jol*Im 0’ 017, ,

since o,w'tyTtT, wBE are real and Im w'B?r-= ~-Tm w'ByT =
= -Im w'ByT.
Setting w'o L = w, we get:
Im o' T'=Iytr+d-2oPlm wz. (10)

Fa

The region Tw is now defined by

Imewt>0

Fal

where w is an arbitrary ideal number from Zx. Clearliy, Tw is

dependent in the most restricted sense only on the class of w.

Lemma 18: If M =($ g)eEP(Ka) and o = ad—Ry, then

the substitution T - t' = Mt maps the region Tm_onhe,the

~ X ~ —_ .
region T , where w' € Ka and w % C lw'. The following

Fa

are true:
o't _a N WT
) Ta =y T4l hﬂﬁp?;; (11)
Im %=lyr’—m[“2|o] hnv‘fi’(-{;!-, (12)
wodrdT =_Eu‘w’dt'd"r" . (]_3)
{ e . (lae'tv)F

_ Proof: If we set w' equal to wo, (11) is equivalent to
(10). But since the left side of (11) 1s dependent in the
most restricted sense only on the number class of w', (11) 1is
universally valid. (12) and (13) are likewise proved by di-

rect calculation checks,, first setting w' = cw, and then
later removing this restriction.
We set TK = Uy Tm' We regard every individual Tm as
a mEk a

a representation of an abstract manifold, so that TK repre-
a

sents a system of abstract manifolds. Through the parameter T,

23
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these abstract manifolds are projected onto 2" disjoint re-
gions of the n~dimensional complex number space, so that the
entire number space is covered, aside from a finite number of

hyper planes, the limiting spaces.

The system T becomes a system of metric manifolds when

K
a

Fa

we define a metric in Tw through the quadratic form

oadrdr
{(Tm wT)*

Clearly, thils metric is dependent only on Tw' Let the geodesic

(@, 8% =5

distance between two points T, T* € T, be denoted by Ew(I,T*).

The feollowing lemma should be obvious:

Lemma 19: Given M € F(Ka), (8) maps the system

~

T onto the system TK such that Tw C TU_IK becomes
: a

-1
o Ka a
~

Tcw C TK with preservation of lengfth.

_ xe _ WT . {v) (v), .. (v) {}V)_gv)
Zz =X + 1y = » that is, = = X + 1y =
N o] o dvi
then Tw is mapped onto the region y >0, and the metric funda-

mental form becomes

d 8% =

dattdy?

y!

Thus the metric already investlgated by Maass lies 1n the

reglon y >0. From reference [4] we take the distance formula

b or e e iy
Em(t2 ;wai)= 'f,.- 5 (log- o % el _l!) | (1)

. wrT .
m‘*"!“\w—'l
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A substitution (8) is assigned to each matrlx M. The
set of all substitutions assigned to the matrices M ¢ P(Ka) is

denoted by F(Ka); similarly, the substitution group fg (Ka) is
1L

assigned to the matrix group FE (Ka). We requilre a fundamental
' 1 ~

domain for the group fl(Ka) wilth respect to TK .  The deter-
o

mination of a fundamental domain §1(Ka) for Ti(Ka) is most
easlly accomplished with the aid of a metrization according to
a procedure already developed by Fricke and Klein [9]1. But a
direct application of this procedure yields no information
about the convergence of the fundamental domain towards the
limiting spaces. Maass [4] gives a method which yields a
fundamental domaln with more useful characteristles. A sig-
nificant simplication 1s achieved in our case through a com-

bination of the two methods.
In each Tw’ we distingulish a point

|_‘"!"yo
e T 0

© |y0>]

~
LA
=3
AW

where all conjugates ofyO are identiecal and independent of u.

%emma 20: %et_M =($ S e {8,9,0,K, 1, then either

= + 3 . .
Mt = * T, OT Mt | # T, 1 for all T 4

Proof: Because of equation (12), it follows from T that

+
m'l.'m
s

Jeo”|

=y 1y — al~ 2ol y,.

TowT,
Yo = Im Tel = ¥ Tw.— =2l Im

and thus
lol = ly 7o ~ alt.

. oy = _ ot . .
Because ImA{yTw,—u) = Im y7T 0= Yi5Y0 it follows that

Mlayy

Je| |

2
o | =lPE >R,
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for vy # 0. This leads to a contradiction with géyz, thus vy = O.
Thus (o) = (8) = (¢). Then M is of the form % ; , where e 1is

a unity and r € K;1 is an integer. Thus we have
_rm'isrwrjl—c with o =to.
Multiplying this equation by m{ e Ka ylelds Re w't = 0;

additionally, w'z is an element of Ka, and is thus real. This

proves £ = 0. It follows immediately from Tw' = €T, that
le| = 1, thus € = +1, and thus T , = 17T .
We define the regions Pm' C Tw' by the following inequali-
ties:
E, (T's Tor) = E. (. M Tm) = Em (’Bf—l Ty Tm) s (15)

where M € P(Ka) traverses all matrices of the form +{8,# 0 K.,

with variables #,0w and w = ¢~'w'. When y, is chosen large

enough, the region Pm, satisfies the inequalities

i N rot 16
ssa 4 e
s -, with o,
C: - }m‘ 2 yr.-= ]J.T.l fiiml_ . (17)
= "
vea . (18)
Cl’ 02,... and Cqs Cosees shall be taken to mean positive con-

stants dependent only on the domalin K. The C's should be chosen
sufficiently large, the c's sufficiently small. In particular,

we shall always assume Ca > 1, . < 1.

The first two ineqgualities are easy to prove when one ob~

serves that P , 1s contained in the region P*w' ( ¢ Tw‘)’ which

is defined by the system of ilnequalitles arising from (15)
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!

when we let M traverse only matrices of the formi‘lgvil
~ _ : D Fg o/
Clearly P;; is a fundamental domain of the group of all trans-

formations 1 = eo(r + B) with respect to Tm,. The goal of the

following lemmas is to prove the third inequality.

Lemma 21: There exists only one constant c, which /373
is dependent on domain K and such that for every
e Tw' there are two ideal integers o € K, v € Ka
where
Y2 lyr— al? - (19)
can be found.
Proéf: The inequalities

S L L L :

y g Ct,é vzz; l/y: I}'lg 1@_ ;———2(_;-' (20)
are solvable for a, vy ¥ 0, O if Cy is small enough, as can be
proven by the introduction of a base for the fleld K and the
class Ka according to Lemma 2, and the application of a theorem
of linear forms of Minkowski. The inequalities (19) follow
immediately from (20).

Lemma 22: The column (%):assigned to T' by Lemma 21
o B !
can be made into a matrix M = v 5)65{6,8,0,Ka} such that
Tr= M7l1' € P, where 3 = (a, ¥).
Proof: As is apparent from the proof of Lemma 14, the
. ! 3 . .
column ($) can be made into a matrix M' = ? g, € {8 9,0,K,}. This

matrix can be right-multiplied by an arbitrary matrix L =

1 B,
( 0 E?)without changing the first column. We set M = M'L.

Then]WE{ﬂ,a,ﬁ,aiKa}. TheAproper chgice of I will always in-

sure that T = L~'M'~I1' € P¥, since Pz is the fundamental
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domain of all L's of the given form. Lemma 22 1s thus proven

with o =6—2e51.

In addition, there exist constants CM which are dependent
only on K and not on V> such that for every point T € P* the
follow1ng inequalities hold:

-ﬁdhgﬁkagmhndgﬁﬁpg%+a (21)
‘We get this by first joining T to To along a properly chosen
path consisting of two geodetic parts and then applying the
triangle inequality to the component parts. The length of the

components is found from (14).

To prove (18), we choose a constant ¥, > e YVZ  Let 1' be

an element of P;’ with y' = Tm &% . c According to Lemma

22 we choose the matrix M. such that M € {ﬂ,ﬂ,c,Ka}, T =
-1 1 D# —i . 51
M-li' € P%, y > c,. Then elther 5 >33 ¥, or ‘czgﬁﬁy <&y,

In the first case, we get T'e wa,. This 1s so because it

o

follows from.QN? >02?y0’?r<cé that.y + 0 and Nyy' < 1 (compare
the proof of Lemma 20). This yields

logNy§>::]/1-z-C'4>2]/"n_C"+log Ny
and

- Yi_
7 5 |!og oy

_i; .
C> VE'SIIO”’ %l—i-C‘.
Tt follows. from (21) that
P 1 ¥ 1 y ! !
E (v, to)=—=S|logL| - ¢,>—= e
(v, T} 7a log ynl Cy> VnS]log yn|+64gEm(r,rm].
In the second case, T is located in a compactum, the intersec-

tion of P* with the region c,g Wiy < ly" Thus we have
0

E (T,EQ<CS, with the constant 05 dependent only on K.
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But we know that E,.(1', 1,0 > Cg
small positive constant 63 £ ¢,. Looking at (17), we see that (18)

when y' < 03-for a sufficiently

is proven for the proper choice of the constant Cq = 03.

By similar reasoring, we can prove that the region P g,reon-
I's

tains the path T =il§Li t, wherey o £t 2 ® and t is the sape for
all conjugates. This means that the point é_=‘(é(1), w(g),..., “<ﬁ))
is a boundary point of P|

Observing that the p01nts MT can be obtained frem a finite
number of such points by applying all substitutions of the discrete
group Pl (Ka), we see that the polnts MTw do nct cluster in any
finite closed region B. Thils means that, except for a neighbor-
hood of <the cusp («), the region Ewi is bounded only by a finite
number of hyperplanes in the sense or' the hyberbollc metric. In
a sufflclently small nelghborhocd of the cusp (*®), however, the
boundary ofP ? is contained in the boundary of P*‘. Clearly, ﬁa'
possesses only a finite number of boundary hyperplanes, and thus /
”gw' is also boundedﬁby a Tinife number of hyperplane portilons.
In addition, since P 1s the intersectlion of hyperbollc half-
spaces, it 18 a hyperbolically convex region. Since ﬁwn is
bounded by finitely many hyperbolic hyperplanes, and is contained
in the fegion defined by the inequalities |x|§ Cl’ ¥z eqs 5@
is measurable and has a finite hyperbolic volume. Thus we have
proﬁed. '

Theorem 3: The region %w' is a convex region with finite
volume and a (parabolic) cusp, and is bounded by a finite
number of hyperplane portions.

Take an integer ¢ from each number class Kg (b=1,2,...,H}.
and let ¢ represent the G.C.D. of a number o € K and a number
Y €X,. Extend the column (%) to a matrix M = ($ g)fé{ﬂ}ﬂ , T, Ka},
where O traverses a complete modulo system of the group (%ed of non-
identical numbers which differ from 32 by at most some number e,
Then construct the finite number of regions MPdi w" From Lemma

b

20, their union of sets is a fundamental domain of the group
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T (K ) wlith respect to T N Substituting equivalent regions for

the MP0 -1, 1n the famlliar manner, we can assure that the fund-

amental domain is connected. This proves:

Theorem 4: The group Tl(Ka) possesses with respect to

TK a fundamental domain Pl(Ka) consisting of 2™ connected
a

regions. Pl(Ka) is bounded by a finite number of hyperbolie
cusps and has a finite, non-Euclidian volume.

o

In like manner, we can construct fundamental domains P (KQL
for the groups H;(K ) from the regions P and their images.

30
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CHAPTER II
FORMS AND FORM VECTORS

§4. Modular Forms for the Class K

Let F(t) = F(T(l), T(E),-.. %(n)) be an analytie function

1) @ ()

of the n complex variables T defined 1in =some

3

region. Then for every matrix M = ($ g), there is a corresponding

operator
F(x) | M = N(y 1 + 8)-*F(M 1), (22)

It is clear how the domaln of definition of the function F(t) must
be transformed when applying cperators such as (22), which are
called basic operators. For two basic operators M, Ml, the pro-
duct and the linear combination with complex coefficients x, A

are defined by

F(x) | (3 - M) = (F(z) | M| 3L (23)

F(@) | (AM + 2 M')=AF(x) | M+ 2 Fz) | M.
(24)

It is easy to see that operator multiplication is isomorphic to
matrix multiplication. When using (24) we must insure that the
ddmain of definition of F(r)|M agrees with that of F(r) M.

The modular forms for the class Ka of dimension -k (k, a
natural number) are characterized through the following four con-

ditions (compare [3]):

1. F{(7) is defined and regular in 'I'K

a

2. TF{t) satisfies the transformation formula
F(t) |L = F(t) for L € Pl(Ka).

3. F(1)|M is limited to y > 1 for all M e T(Ka),

assuming y = iﬁ?f%% where w € U_lKa and ¢ = aﬁ - By.

4, If F(t) satisfies the supplementary condition
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lim Fir) | M =0,

Y-

assuming 1t = i%lil y(v) =y,ﬁV'= 1, 2, ..., n), then let F(r)

be called a cusp form.

A modular form for the class}%’of dimension -k will be
called of type (Ka, -k); if F(t) is a cusp form of type (Ka, -k},
we will call F(r) of type (Ka, —k)s. We write F(71) € (Ka, -k)
on F(;) € (Ka, —k)s.

The domain of definition of the modular forms for the class
K, decomposes into 2" separate regions %L* (' € K ). This means
that a modular form for the class Ka always consists of ol ana-
lytical function branches which have nothing whatever to do with
each other. If we take the function branches of all modular forms
defined in the region &;, to be functions of z = wbt/ mf, we get
a qystem of automorphic forms such as those investigated by Maass
[5]. From reference [5], we know that these function branches 7
in the region @m, constitute a linear family of finite rank. But
this fact implies that the modular forms according to our defini-
tion also constitute a linear family of finite rank, since our
family of all modular forms can be wrltten as a direct sum of
form families in the cited work. Thus we get

Theorem 5: The modular forms of type (Ka, -k)
constitute a linear family of finite rank.

Lemma 23: Let M, M' € r(Ka), M I M' and
F(1) e (K, -k); then F(T)|M = F(z)| M.
Proof: We have stipulated that M' = LM with L € rl(Ka);
thus 1t follows that
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FIM —F\LM=(F|L)|M=F|M.

Lemma 24: Let L¥*¢ Fe(Ka)’ F e (Ka, -k}; then it is
also true that F¥ = F|L* ¢ (Ka, ~k). If F is a cusp form,
then so is F¥,

Proof: 1. The substitution L*¥ carries T, into itself, thus
a

F# is defined in TK
a

2. Let L e Fl(Ka). Then L* 1 L*L, since Pl(Ka) is
a self-conjugate subgroup in TE(Ka). Thus, according to

Lemma 21,

F*| L F|L*L=F|L*=F*

3 and 4., Just as for Ml it is true that M¥ = L*M ¢ F(Ka)
and that

FEiM=F|I*M=F{M*./

It follows from this that F¥* also satisfles conditions 3 and 4.

Lemma 25: If L € FE“(Ka)’ that is, if the determinant of
L € T(Ka) is a fourth power of some unity g, then F[L =
for every modular form of type (Ka, =k).
Prcocof: Every L € rEq(ga) can be written in the form
L =1L {& OEzA) with Ly € rq(K).
Thus, according to Lemma 23,

Ft)} | L = F(z) {(f)’:f) — Ne-24 F(x).
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Because Ne = 1, it 1s true that Ne 2% = 1, and Lemma 25 follows.

Now let x be a biquadratic character of the unity group.
Just as for every modular form F(1) € (Ka, -k), it is then also
true that

Foo) > iy X ZOFED € (Ke - B3

because, according to Lemma 24, F(et) = F(1) (F %) is a module

01
form of type (Ka, -k); thus the same is true for even linear com- /377

bination of finitely many F(et). According to Lemma 25, FX(T)
is independent of the choice of a system of representativeé

mod <EM>. In addition,
F )= z(&) F (1)

1s s8till valid for every unitysl. In fact,
P = _1.__ - 1 —
Fita 7) = 59 %‘ ie)Fee 1) = z(s,)mg, Zlea) Fleg t) = y(e) F 1),

Inversely, 1t follows on the basis of known relatiomns for.abelian

characters that

Flry= 3 F (1),
= .

summing over all biguadratlc characters.

A modular form of type (Ka, ~-k) will be called of character y,
or of the type (Ka, -k, %), if it satisfies the extra condition

5. F(et) = x(e)F(1) for all ¢ € K, where y is
a bigquadratic character of the unity group.
Let a cusp form of type (Ka, -k, x) be called of type
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(K, =k, x )y» Thus (K_, -k, x )y = (K , -k) N (K_, -k, ¥).

3inece the intersection of the families (Ka, -k, x ) and (Ka, -k, xl),
for the case x # X
family of 811 modular forms of type (Ka, -k) is the direct sum

of the families (Ka, -k, x ). Thus in particular, the families
(K > -k, X.) and (K s -k, x) possess a finite rank.

clearly includes only the null form, the

The following lemma follows directly from condition 2 and

condition 5 for forms of type (Ka’ ~k, x )

Lemma 26: If L e I' (K ) and F (1) (X , -k Xx),
then

F(o) | L= x (&) F(z),

where El is the determinant of L.

We cannot necessar;ly find medular forms whiqh differ from
the null form for every biquadratic character of the unity group.
For instance, setting L = (g i , the definition of the basilc
operator yields F(T)| L = NE-kF(T) and Lemma 26 yields
F(T) L =x, °F(t). It follows that

% (e = N+, {25

provided that F(T) is not the null form. Characters which
satisfy this condition are called admissable characters. In

partlcular, setting € = =1 in Eq. (25) yilelds

Pe z ()= 2{(— 1)®) = (N~ D¥= (- 1)~

Thus if nk is odd, no admissable character y exists. Then there
would be no modular forms of type (Ka, -k, x) (x arbitrary)
which differ from the null form. It follows from the above
that every modular form of type (Ka’ ~k)} vanishes identically.
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From now on, we will always stipulate that nk be even and that

y beé an admissable character. For later applications, we con-

tinue the character X to a character of the group Z* of all non- /378
zero ldeal numbers o. TFor this, we choose a complete system

of prime numbers p and define

1(@)=VN{oyNg-*,

where the root must somehow be determined. Since the unlique
factorization theorem is valid in Zx, x (o) is defined for all
numbers 9 € Z° when we set X(0) = x(g) I (X(p))yp for o = éﬂov
and when it is true that

e

x(o) x (0;) = y(oa’).

In addition, we have

x(0%) =N (o) No-*. (26)

This equation is a generalization of the admissability condition,

and will be necessary later.

Since F(r)|M is dependent only on the left class M,
R{n, x, o, Ka) as an operator for modular forms of type (Ka’ -k)
is uniquely determined. Every left-equivalency relation for
matrices now has a corresponding equation of operators. Egqua-
tions of operators will be labeled by the additlon of the phrase
"for (Ka, k)" or "for (Ka, -k,% )." We now list some equations
of operators for later use.

R (n.k, 0, K,) = B (n, ﬂ,nz,KG)(;ﬂ_o,o) for (Ko, — 1) (274
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R(S,9,9% K,) R (n, %, 6,02 K, = R (8 7, 8, 0%, Ko). (28)

Indeed, right multiplying a matrix of the form (n n,n>, K_)
1 0

by, O.n%f yields a product matrix which, according to Lemma 9,

1s contained i1n ITKa) and has determinant ¢ , and for which the
G.C.D. of the first column-.is wnaltered, while the G.C.D. of

the second column is n%a= % = K (28) can be proven in ana%dgous
fashion. Lemma 26 can be written as an equation of operators

for the family (Ka’ -k, X:

R(,1,e K)=zle)  for  (Ky—k g

From

R(l, 1,6, KR (1,160, K) = R (., 08 Ko)

we get the equation of coperators

I(S)R(W‘K: Gr}‘fc):-R‘(??,K,E,O'KB) far . (Ka,—l;' Z]— (2,9)
In the following lemma, we use upper- and lower-case Greek
letters in like manner, in order to avoid superscripts.
A B ! i : . ’
Lemma 27: Let (F A.) € fH K,E;, Ka’_},r (i g) € {n,e,
l‘Ka} and Io/(T, +). Let %/Z and Zel Ka. Then

tHere exists a number A € E_lo_lKé'Such that

T, 5

 H "-“?“Z"_(‘lg‘) (30)

If Z trgverses a full system of mod % different multiples of /379
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1

T for fixed H, then A traverses a full system of mod %%

different multiples of g— . In addition,

(?E) Uz(:é)U—”E{Hq, Kk, Yo, K,}. (31)

Proof: (30) is mod %% uniquely solvable, since setting

A= A %ﬁ vields a congruence mod K which according to Lemma 5

is uniquely solvable with integer 2 #%¥. Inversely, for a
given » € g=lg=1 Ka’ we can regard.%ﬁ/l as a congruence for
Z E'E—lKa with %IZ. Again, Lemma 5 shows that this congru-

ence 1s solyvable. The proof of (31) is now clear.



. fTne T-operators for modular forms of the class Ka

In this section, F shall always be taken to mean a modular
form of type (Ka, -k, x). Equations of operators-are always
regarded as equations of operators for modular forms of this type,
so we will drop the phrase '"for (Ka, -k, x)" for the sake of sim-
plicity.

Utilizing a complete system of representatives for the left
classes of all matrices with determinant ¢ constructed according
to Theorem 1, we define, following de Brul]n [8&5 the operator

TK(U)'. for all modular forms of type (K , -k, x )3
a

Tk (0} = N (0}~ % (o) z  Rlpeo KU,
lfud'{zf‘vxnﬁ v

1 x
L1t eomEptmod ]

It is immediately obvious that Ty {s) is a linear operator. We
a

also have the followihg lemma:
Lemma 28: The operator TK (¢) as operator for the family
a
(Ka, -k, X) 1s dependent only on (o).
Proof: That the T-operator is independent of the cholce of
the system of representatives of the left classes for fixed
o follows from Lemma 23. The invariance of the operator
when o is replaced by sc follows from Eg. (29).

Lemma 29: Let F(1) & (K, -k, x); then F(t}| Ty (o)
a
€ (U_l

-

K> -ky%). If F(1) is a cusp form, sc 1s F(r)| Ty (g).
a

Proof: Verify the defining conditions for the modular forms

of type (U'lKa, -k, x ) are: s (o_lKa, -k, X%, one by one

(compare the proof of Lemma 24).
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Thus the T-operators can be applied repeatedly one after
another, taking the class 1ndices into. account, of course. Thus
the T-operators are in general not commutable. Instead, we
have the following theorem:

Theorem 6: For modular forms of type (K , =K, %,
the following operator equatlon holds:

Tg,(5) Temg, o) = 3 R(@,9,0% KN (9P 1(9%) Tous, '
‘ . woliEo) ‘
Proof: From the definition, we have
T (Z) Trig, (0) N(Z o)~ 2(Z o)
=Y RBRMHK ZK)U?3 R(n, Ko, 1K) vt
),z (.¢ )
= Y RMKEIK)U R(ypK, 0, Z1K,) U
WL 2.0 .
where the conﬁygions of summation are to be taken from the
defining equation of the T-operators. Since the choice
of representatives is not critical, we can assume that they
have been chosen such that Lemma 27 applies. So the right

side of (32) can be changed to
- ¥ X RH 5, K, To, K,) U+
W1 Z¢ ,

where 2 1s a function of Z for fixed H,n . According
to Lemma 27, we can now introduce X as a new variable of

summation in place of Z. We get

=) X R(EH 5 Ke. T o K3 ri+s
F () ,;Z,; (HpKe,Zo, K} U
Unla g [A€ET01 K, Amod :‘,,

< [ter—ia K, rmod X
,,l qr =m0l |

A further transfermation of the variables of summation is
begun by

K H __Hs

o= =T

/380

(32)

ktThe following term is handwritten in oricinal AL The ond

of thé equation: (jgfg)iﬂj
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It is now always true that
1/8[(Z, 6) and 1/ulfea.

Inversely, for every pair ¢,y which satisfies these conditions,
there exists a palr H,n determined down to unities, such

that (33) holds, namely

L0 I . ol
T @) - (34)
Furthermore, according to Lemma 16, £ = i +z 1is only
critical mod KX/Iﬂ] + For fixed H,n , however, there are

exactly N(g) pairs A, Ttfo which the sameg mod]Kx/Hn
must be assigned. Applying these substitutions, the right
side of (32) finally becomes

Ly e o . :
H(o,.(z,.)_eR(‘? g So Ko N@ U,

s / %ﬁ 1s valid, thus (28) can be applied, yielding
d . Lo Yo
= 3 R(OD,0,00,K)R (y, P H-2 Kn) N U

(B () £

Thus r, (£)Temig, ()= X N(E o1 5(Z ) N(#) /381
. . (8)(n). & : :
. Ya ZEo Yoo
x R(9, 9,0 K,) R (Ju, rei e S K,,) L

o

= X ON@P (9 R, 9, 92 K,) 7(:‘3.91) N (._ﬂ_z_)“—l
1/9%):, a) !

Te ZTo : ! .
= == 2 I 4 :
x ¥ Rlpgew FeE)UL “‘ )
(u), & . !
nl | S :
. l N '
';‘IEEZ_‘;"IK“ ] /
o
émodw

The multiplicétion theorem follows immediately. for the

case h = 1, we see that the T-operators are also commutable.
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§6. Form Vectors

We construct a vector

F={Fx (@)}

from h modular forms FK (1) (Ka, -k) (a=1, 2, ..., h).
a

We call such a vector a form vector of type ﬁK, -k}. All form
vectors of type {, -k} constitute a linear family which is clearly
the diréct sum of the families (Ka, -k), and is thus of finite

rank. We call the h modular forms FK () (a =1, 2, ..., h)
a

~

the components of F. When all components of F are cusp forms,

we call it a cusp form vector, or of type {X, -kt ; when all
components. Fy (t) (a = 1,2,...,h) are of character ¥, we ¢all F
of type 1K, -k? ¥}. The type {K, -k, X}S is defined analogously.

Since the components of a form vector of type {K, -k} can
be split up by characters, the family of all form vectors of
type {K, =k} is the direct sum of all families of the form

{K, -k, x}.

We now define the operators R(n, ¢ ,9 ) for form vectors of
type 1K, -k! by

FIR(z, {<, a) = {F“Ku (r) | R (0.6, 6, 0 K,}}.
A direct result of (28) is
R, 9,9 B (4, 0) = B (09, 0%, 9%) . tor K, ~ &) (35)

and 1n particular

R(O,0,02R{},9,P)=R(O%,OH @*§) for {I{, — k}. (36)
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In addition, we have the following lemma:

Lemma 30: The operator R(dﬂ 9, ﬁz) transforms form
vectors of type {K, -k} intc form vectors of the same type.
Proof: The component /382

Fog (r) | R (2,9,0% & K,)
of F |R(ﬂ, ¢, ﬂz) which belongs to the class Ka is clearly a

modular form of type (Ka, -k).

Lemma 31: Let F e {K, -k, x}; then
F IR 8,9~ N@)-* g8 -F for 9K,
Proof: The component of F|R(?, &, 192) which belongs to

the class Ka is

1 (80
Fi,(0[(g9) = NO-*F (1) = N(8)~* 1 (8% g, (x).
From these two lemmas and from (36), it follows that the opera-
tors o ‘
R(D, 9,0 N (97 (8% with § ¢ Z%
induce a representation of the finite a%elian number class group
2%/K* in the family of all modular forms of type {K_, -k, x}.

Let w(Ka) be a character of the number class group, that
is, let w(K; )y v (K?g ) = (K’; K;). We will also set Y(o) = w(K’;)

for O‘G,Ka . Let a form vector F of typé {K, -k, X} be called
a form veetor of type 1K, -k, ¥,¥} 1if the following condition
holds: ~ - . '

FIRWD,J0ON@FZO) =p@)“F  tor Hcz’ (37)
On the basis of famlliar theorems from representations theory for

finlte abelian groups, we know that the family (K, -k, x! is
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the direct sum of the families (X, -k, X, ¥1.

~

We now define the T-operators for form vectors F = [P ()1
: a

of type {K, -k, x} by A
PIT (o) = {Fox (1) | Tog (o)}

Lemma 32: The family of all form vectors of type
{K, -k, x} is projected onto itself by the operator T(o).

Proof: From Lemma 29, the component of F|T(o) which belongs

to the class Ka is
FJK’(T) ! T?KG(G) € (Ka! - k: Z)

Hence the T-operators for form vectors can be applied one
after the other, and Theorem 6 follows Immediately:

Lemma 33: The multiplication theorem for T-operators

of form vectors of type {K, -k,x} is given by
TS T = ¥ R@HMNEE-1Z0) T (). *
3052, ) :
In particular, the T-operators for form vectors are thus

commutable. If we further 1limit the region where the operators can

be applied, (37) leads %o

Theorem 7: The multiplication theorem for T-cperators
of form vectors of type 1K, -k,x ,¥} is given by
TETE - T Koty 7(5E).
i
ll’{(("'?-‘) -
This equation is now formally equivalent to Hecke's multiplication

theorem for T-operators.

™~
(o8]
@]
(o]

*{Translator's note: Handwritten comment appears in the original to

the right of equation: ZEssential for Euler product.]

Ly



§7. The Fourler Expansion of a Form Vector

First, we look at a modular form F, (1) & (K , -k).

a
This form satisflies the transformation formula :
P, (t1+g ) = F (T)I-UC =F_ (1) for integer gEEK_l

K K \ K a,

a a a
that 1s, Fy {(r) is a periodie function. A bit of reflection

a

reveals that FK (1) possesses a Fourlier series of the'form

a _ ;

e = X alu w)etu) o TET (38)

2l B
271 SuT

in every T, assuming e = e{(utr). The first argument of

the Fourier coefficients is the 1ndex of summation; the second

denotes the reglon of convergence, and can thus be varied with-

in its class. Since Fy (1) is restricted to the region_ﬂn%%l > 1,
a . W
(38) reduces to

Cal

Fr@=c o)+ 5 afmale@n = TE T,

..l F
'5"“53:

- P

|

and a(u, ®w) can be replaced by .a(u u). A simple notation
change yields:

Lemma 34: Let FK (r) be a modular form of type
a

(Ka, -k); then there exists for every ldeal numberw € Ki
a Pourier coefficient aoﬁu), and for every ideal number
b€ K;;with %/ﬁ_a Fourier coefficient a(p) such that
Fy, (1) = ay(0) + %‘ alue(u) - o TE Ew

A '
!

(39)

1
FIFSK:
rZ e
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given e2TISUT o o(uT).

A direct result of Lemma 34 is
Lemma 35: Let ¥ be a form vector of type { K, -k1l;
then there exists for every ideal number t»EZx a coefficient
a, (w), and for every ideal number u g 7% Wlth —-/p a
coefflclent a@m) such that the component of F which belongs
to the class K has the Fourier series (3a) in the region Tw
(withw € K_).

Now let F be a form vector of type {K, -k,y} . We will
set ag(w) = ¢ (w) x{w) and a(u) = c(o) X (w) , whereo = Bu.
c(o) is now defined for all integeroc . For every component of

ﬁ, the following holds:

Fy,(e7) = yle) Fg (7). (40)
Substituting in the Fourier series on both sides and comparing égﬁﬂ
coefficients yields
c.,A(w) = ColE ), ¢ (o) = ¢ (¢ 6);

that is, the coefficlents c,(w) and c) are dependent only on
(w) and (o) respectively. Then we get:

Theorem 8: Let F be a form vector of type {XK, -k, x};.

then there exists for every (w) € 77 a coefficient co(w),

and for every integer (09) a coefficient c() such that the

component of F which belongs to the class Ka possesses the

the series expansion
Fg (1) = colw) o)+ X c@p)zlp)e(ur)
-;—[lea o
~, o |

in the region Tw.

Now let B € (X, -k, x , ¥} . Theorem 8 1s valid in the.form

given. From the expansion of the components of F the expansion
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of the components of‘ﬁHT(o) can now be computed as well. From
the definition of the type {K, -k, x ,¥}, and from Theorem 8,
the following holds fort e T =~2 .

- Wt

Fomeg, () = Fi, (9] B (. 1, 7%, K, N () Z07) ()
‘ =) y(nw) + 3 o (dp) Flu)e(u rJ./

I

1 .
. Fleerr By
!

HEN e
. 1 0 : ' -
Applying the operator (0 ﬁQ;);to both sides, (26) and (27)
yield the following fort € T 1,0
w

, Fy (0| B (g, 7 0, Ko) N(n)* Z(0) 9 (m) _
=N (%)_Jt x(:—:) {co O o) zOr* ) + Zo@m 7 (1) e(’”f:—')}
Setting u = Q%Fﬂyieldg
T Fe (IR % 0, KON 7 0) P (1) =
=¢(nrtw) z(‘;f)+ § .c(-a—%f‘—'):?(#')e(ﬂ’w |

[

’ - -1 .
B eas

We see without further ado that P € {K, —k,X; vy} is a cusp form
vector if and only if all the coefficlents oOQmJ are zero. We

have now proven:

Theorem 9: Let {co(m), ¢(5)} be the system of Fouriler
coefficients for the form vector F € {K, -k, y,¥} ; let
{ Cg(m), «®(5) } be the system of Fourier coefficients for

the form vector F| T ). Then

@) = X NP vy e (5) 2(Z).
10l
)= ¥ 1 o [ 20
(2) & N () w:(ﬂ)c(ﬁ,),
102, 0

s
1)
(@]
U

Eroof: Compute the Fourier expansion of the component of
%[T(G) belonging to the class K, and compare coefficients.
All necessary transformations are permlssable, since the
Fourier series' coﬂ?erge absolutely. When carrying out

|
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the computation, observé that

and

el U =e(p)e(u)

. 1 where 1]/ ou, —
-1 - ‘
N (A) ‘::" ¢ (‘u ¢) {O otherwise -
l] £ mod — '
7 )

§mep?t

The ccefficlents co(w) are determined by the remaining coef-
ficients, as there are no constant modular forms of type (Ka, -k)
(a =1, 2, ..., h) which differ from thernull form. In order to

express the coefficients co(m) explieltly in terms of the others,

we require

48

Theorem 10: Let ¥ = {Fr (1} & {K, k,% ¥}  then
a :

1 s i
an (._ .;) = N2k p(K,) FK;_I(r) for T €§Ka_1..
Proof: We start from

Fg (1) R(3,0,9% K) N@F 7 (%)  (F) = Forg, (1),
letting ¢ € Ka; thus we can set R(ﬂ,ﬂ-,ﬂa' K.) =1,y 0 b

and we get

F, (—F)N v N @F NOZ (09 §0) = P (1)-

from which Theorem 10 follows immediately.

Lemma 36: Let ﬁ be a form vector of type {K, -k x ,¥}; .
let‘{coﬁu), c(o) be thé system of its Fourier coefficients/
Then

"

1
ik

T o=?

cn(w)z(w)=i"*'2(w2)w(ﬂi)linLN v X c@mzmwelilyy).
_ y— .



Proof: Let Tt =1 with y.» 0: Then according to
Theorem 10 and Eq (J

Substituting in the Fourier serlies' on both sldes, we get
Colw)zlo)=— 3 c@u) g ot
_ ﬂ%; ( #)x(#)e(yg .y ﬁ
FZ N @) (5 ) 22N
+i"5 % (w?) W {w) N y’:‘g}‘-(ay) ATOK: (y i'i%y).
Carrying out the limit y +0 yilelds the proof of Lemma 36.

Lemma 37: Every form vector of type { K, ~k,x} is /386
a cusp form vector if there exists a unity €0> 0 such that

x(eo) # 4+1. An example of such a unity is ei, where Neg = -1

and K is odd.
Proof: Filrst let P @i{KQ -k, x ,¥L - ¥ arbitrary. According

to Theorem 8, the coefficient co(w) ls dependent only on
(w) and ao(w) = coﬁu) X (w) 1is dependent only on T -

Thus, for gy > 1, x(EO) 7 1,

colw) ¥, ) = Colggw) 7 (ggt0) = o) 7 (o),
hence co(w) = co(w) x(so), hence co(w) = 0; that is,
{K, -k, %, Y% contains only cusp form vectors. Since the
family {K, -k, x} can be represented as the direct sum of

the families {K, ~k, x , ¥} , the family {K, -kyx} also con-

tains only cusp form vectors.

Lemma 38: Let F be a form vector of type { K, -k,x}
with k > 23 let fco(m), c{o )} be the system of its Fourier
coefficients. Then

c(o)mO(N(o)"—l*") - forevery &> (. (“l)
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Ir F is a cusp form vector, then it is also true (even for

kK = 1) that

c(a)=o(N(a)'§‘). (42)

Proof: We look at the function branch of the component FK (t)
a

which belongs to the region Ty, where we can assume that &

is an integer. Applylng the operator é 3 yields a

~

function defined in the region T1 which is a modular form of
order (w) in the sense used by Kloosterman. Hence the
assertion holds for the Fourier coefficients c¢(¢) with

o EJ%. Because of the finiteness of the class number, the

assertlon is thus universally valid.

For the case k = 1, the approximation (42), which 1s

weaker than (41), is universally valid.
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88, Representation of the T-C perators

A
Let S be an arbitrary family of form vectors of type
{K, -k, x,¥}, which is mapped onto itself by all T-operators.
’ Ea) N
Let the rank of S be r. In the family § we trace a basis

~ S

{F!, F2,..., P}

Thus for every operator T(g) there is a corresponding matrix
Clw) = (cab(c)), the representation matrlix of the operator T(O)

with respect to the basis {ﬁl, FE, ‘s §r}’ such that
PIT(0) = X ey MF (43)
. e _
From Theorem 7, these matrices C(g) satisfy the multiplication
rule
. z .
cEcE- T o(HNoE-1p@).
Jfo(;?s, o (44)
]
The Fourier coefficlents of the basis vectors of the family § /387
are arranged in g matrix with a finite number of rows and an
infinite number of columns:
...,cle(w),.;. R X ) I
cach{e), . L (E,
B 4
el (@), (D), (45)

The constant elements are in the left submatrik, so this sub-
matrix vanishes if ﬁ includes only cusp forms. The matrix (45)
is of maximal rank. Silnce every linear relation between the
rows of (49 would be transfered to the basis vectors. But the
right submatrix is also of maximal rank, since Lemma 36 implies
that every linear row relation of the right submatrix is trans-
fered to the left submatrix.
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Assume that the columns of the right submatrix is ordered
according to increasing N{(Z). Let B denote the smallest natural

number such that the matrix

(e (Z)) wnereN () < B

iz of maximal rank. Then 1t is clear that every form vector

F €3 whose Fourier coefficients c ()vanish for N(L) < B also

vanishes identically.

If we compute the Fourier coefficients of FaiT(U) according
to Theorem 9, (43) yields

ol : r
z el INOPp@) = B e (o) (5), (146)
HOMES) o g o r
M= — N (F)k-1 e} = L) .
. a3 gnorvoa(G)- Zewode (47)
The left side of (46) is symmetric in I and ¢, hence so is the
right side. This means that
2 Caplo) et (Z) = 3 gy (T)e? (a). (48)
dm1 b=1

We replace I row-wlse with numbers Zl, 22, ‘e s 23 such that

the matrix (cb(Za)) is of rank r. Then we can regard (8 as

a linear system of eqguatilons for the cab(G)'s with fixed (9,

and we can solve for c_, (o). We get the cab(G)'s as linear com-

ab
binations of the cb(o)'s with coefficients which are independent

of §. Thus there exist r matrices Bb of degree r such that
Clo) = ¥ cb
g E (49)
We make the following definitlon:
. _ o b BY.
Golw) =2 o 1) (50)

The elements in the a-th row and b-th column of the matrices
'{CO(U}, C(O%} can thus be regarded as Fourier coefficients of

52
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a form vector Fa The family generated by the form vectors Fab

b
is contained in the family S. 1In addition,

(o) =b2' e (0) & (1) (51)
=1

from which it follows, that the Fa 's are linearly equivalent

b
with the F2'g.

A transformation of the matrices C(o) with a non-degenerate
matrix corresponds to the transformation of the basis for the
family § and vice versa. We know that a finlte number of com-
mutable matrices can be transformed to the triangular form: this
means in our case that there 1s'a basis in the family § such that
all matrices C(o) with N{(aq) <B have the triangular form. But
since the corresponding elements of the matrices (o) can be
interpreted as Fourier coefficients of form vectors of the famlly
§, it follows that all matrices C(0) are triangular matrices.

We have now proven:

Lemma 39: 1In every family § of form vectors of type
{K, -k, x ,¥} which is closed wlth respect to the T-operators,
there exists a basis such that the representation matrices
Aof all T-operators have the triangular form.‘ Thus, in
particular, there exists in the family S an eigenvector
of all T-operators. '

All multiples of an eigenvector ﬁl € {X, —k;x , ¥} constitute
a family of rank r = 1 which is closed with respect to the
T-operators. (43) now implies thdt

1T (0) = e (@)F

that is, cli(g) 1s the eigenvalue of F with respect to T(0o). It

follows from (51) that
e1(0) & (1) = cX{(g) .
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Because Fl Z 0, it follows that cl(l) # 1. Eigenvectors which

satisfy this condition are called normalized eigenvectors.

Theorem 11: Let F € {K, =k, X, ¥} be a normalized
eigenvector of all T-operators; let the system of Fourier
coefficients of F be &o(td, c(c)l Then

F T =clo) 7

| S
eEele) =" T ¢(FH)N@P-1y0).
lfﬂ,(o'-‘)-'-c) '

and

Proof: The filrst assertlon has already been proven. So the
second assertion follows from the multiplication rule for

the T-operators.

Thus, in particular, the Fourier coefficients of a normal-
ized eigenvector are multiplicative with respect to relatively
prime arguments. The 1inverse is also true. The proof of this

requires the following lemma:

Lemma 40: Let p € 7 be a given integer and F a form
vector of type {K, -k, x, ¥}. Let the Fourier coefficients
be
_ ¢(g) = 0 for the case p/o.

Then F = 0.
Proof: 1I% follows from the given that
&

F_x,,(f)i(o f)=Fg¢(‘r+§) =Fg (7).
This can also be wrilitten as
122 -
Fer, (t)| Rlg, 0, 0% 0* K,) (Q ie ) = N{g) % 7 (0% wlo) Fg (7).

We now .choose o E|3"1K,'y epKé,a' e;aK;I such that
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%, Y, L, P are palrwise relatively prime. Then let

R(Q' [ 92: 93 I{a) = (;g gg) -

We can now construct

| : - 1 2o~y
Fon= (6 - rea o1 ( )
We execute this construction for all Ka and set

~

F (V= {Fpg,|Vpg,}-
On the one hand, we have
B AV=N)r* y() plo) §

and

FIVA= N(o)™ z(e*") §;

on the other hand
‘,A A _- j :
F l VA= {F‘KGJ "‘rKa_} where}v‘b— = VKG Vg—axa .. Vﬂ__gm_l)xa.

2h

But the matrix W has determinant p € K and relatively

Ka

prime elements. Thus there exist matrices Ll’ L2 S Fl(Ka)

such that
10
Llll’gaL3=_ (0 921;)

Thus if% follows that

f1o0 om0
Fi, (0 | (g gza) = N@)* 7 (0™ P,
and FK is constant.
a
Theorem 12: Let F be a form vector of type {K, -k, x, ¥}
let ho(w), c{g)} be the system of Fourier coefficients of

~

F. Then it follows from

¢(Z)c (o) = ;(E o) for (Z, o) =I1 _

that F is an eigenvector of all T-operators.
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Proof: Let p be a prime number. Calculation shows that all

Fourier coefficients c¥(a) of the form vector

F=F17 (o) - c(e) T

for which p /¢ 1is valid vanish. Thus it follows% according
to Lemma 40, that P vanishes identically. Thus F is an
eigenvector of all T(p) wherep is a prime number. Since
the T(g)'s all lie in the operator ring generated by T(p),
P is an eigenvector of all T(og).



83. The Metrization of the Form Vectors /390
Let F = {FK (1)} and B¥ = {Fg (Tt} be two form vectors.
a a

Using the notation of Lemma 18, the following is true for every
matrix M eF(Ka):

Fe ()| M =N(yr+ 0)~*Fg_ (I 1),

'F¥ (r) | MU =N{yr+§-*+Ff (M),

lol o = ldhl lyr+6!h1*———lyt+éﬁ

It follows that
N (s} Fg_{7) i .ZII—F}’\-‘. (1} M- Nyt = Fg (M1} Fy (M) Ny*- (52

If we choose M = L € rl(Ka)’ we get

x, @ FE (@ Ny* = Fg (L) Fy (Lo Ny'* (53)
Thus the integral

B —_ . dzxdy
(Fx,'F}a)Ka —Pl_f({:fx,,(r) R Ny

where y = Im Fg%; x = Re fgimust be entered, is independent of
the choice of the fundamental domain. _The existence of the

integral 1s in any case assured if FK or Fﬁ is a cusp form.
a a

ThlS is easily seen when dne decomposes the fundamental domain
P (K ) into the images of the reglons P The existence of the

integral over every such region is proven by transforming the
field of integration'into the correspohding_ﬁ%, utilizing

Eq. (52); in the process, we see that a necessary and sufficlent
condition for existence is that at least one of the two modu-
lar forms must vanish in every cusp. We assume, for the sake of
simplicity, that one of the two form vectors is a cusp vector.

3

We now define the scalar product” of two form vectors, at least

3This scalar product i1s defined analogously to Petersson's scalar
‘product of the modular forms for a rational modular group [11].
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one of which is a cusp form vector, as follows:
(FF) = Z Frp P,

The following lemma is immediately clear:

-~

Lemma 41: 1. Let F or F* be a cusp form vector. Then
FF*) - T
2. Let the r form vector;rﬁ; or the s form veetors %g be
cusp form vectors; let i 2’ Kg be arbitrary complex numbers
2, «+.5 ). Then

)—E/ i3 (Fu»Fb)

(a =1, 2, «v., : b =

l
(2 1.Fu X AT

3. Let ¥ be a cusp form vector. Then

FaT™

whenever F‘is rnot the null vector.

We also have /391
Lemma H2: Let F or F* be a cusp form vector Then

(F, ﬁ*) -0 if F € (K, -k, y }, F¥ € {K, -k, Y x4 x¥,

or if F e{K, -k, X, ¥}, Fe {K, -k, X, v¥} , ¥ # y¥.

Proof: In Eq. (52), set M = R(1, 1, ¢, Ka). It follows

that - ' -
7€) 7% (&) (Fi (0, FE, (D, = (Fg, (), FE, (s,

and hence (Ij, F#) = 0 for x# ;{* _
The second assertion 1s proven in anagigous fashion, setting

M = R{#.8, 0% K,)

We will call two form vectors ﬁ, T# orth@gonal if their
scalar product vanishes. The set of all form vectors of type

{K, -k }.  which are orthegonal to all cusp form vectors
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constitutes a linear family which we denote by {K, -k}. This
family can be further split up into the gubfamilies {K, _%£X}O

and the subfamilies {K, -k, x,lpﬁo. The family {K, —k,x]ﬁ- is

mapped onto itself by all T-operators. This fact 1s a direct

consequence of

Lemma 43: For form vectors F, F* of type {K, -k, X, v7,
at least one of which is a cusp form vector, the following
holds:

@ 1 T () 8% = p(0) @ 5% T(0).

Proof: We use the representatives Ry, Ry, ..., R; of

Lemma 17. Then
(Fx,| Tg, (o), F3 g ) 5,

= {FKGI N{o}*-1%{0) Z,'IRF,F*K | By N{o)} % (6%) 'r,v(a)) - K,
g

= (P, I N(@*~* 7 () TR,uF*A | Ry N (o) 7 (6®) ¥ (0))o x,

= N{a)*-14{s) w(o) (FK [‘—'Rﬂ,F*I‘ [RJ-.A

We integrate not over a Iundamental domain ofr ( _lKa),
but over a fundamental domain of the subgroup .l(o-lKa)
- v _ _
of Pl(c lKag’ where the matrix group Tl(g 1K£ is defined
: -1 . _ {10
as the set of all L & Fl(o KaDw1th L = (O_l)(oﬂ.

Integration over the more extensive fundamental domain 1in
the formatlon of scalar products will in the future be
indicated by the superscript @ The matrix group F (K )

hags a finite index in Tl(Ka); hence the index
glo) = (Ty(K) : r_g(K'a)) is also finite, and additionally

- [} + [ . * .
is independent of Ka' Since the forms FKaiﬁu\and FGK Hn

act like modularuforms with respeet to the operators of
the group If(Ka), we can interchange the summation and the
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formation of the scalar product:
(F K, | T.Ka (o), Fiu Ka)a" E,

= N(op*-1 x(o)tp{o)ﬁ(z Fy | R, Fig, ;R)a_ﬁxn .

= N{a)**-1 x (o) p (o) (U)Z(FK |R,, Fog [R)—:K ]
Applying (52) with % = M and observing that all functions

are modular Torms with respect to the underlylng group for

scalar product, we get
(Fr, | Te (o), Fo-1g Yo i,

- =N(0)""1}.’(0)w(0)wla)'2(yx iz, | By B
=905 {a) (Fx,, F2z,| Tux, (a))
We have made use of Lemma 17. But now there are modular
forms of the ordinary modular group on the right silde of
the equation, so it suffilces to-ihtegrate over a funda-
rmental domain of the ordinary modular groups, where we must
again multiply with the group index. Thué.we have proven

(Fx sz (0), Fomg )u—lx = w(a)(Fz ,F*x | Tok, (ﬂ))

[

Lemma 44 follows when we sum over all classes Ka'

In the family {K, -k, X, ¢}, a unitary matrix is defined by
way of the scalar product. Starting from a@ arbitrary basis

{ﬁl, ﬁg, “ ey ﬁr}, we can easily assure, through a basls trans-

formation, that all matrices C(g¢) have the triangular form, as
was shown in the last section. There exists another transfor-
maticn, which does not affect the triangular form of the matrices,
such that the new baéis vectors will be orthg@onal and normalized
in the direction of the metrilc. Hence we cdn assume from the
start that the matrices C(s) are triangular matrices and that
the basis is a normal basis. Then the matrices are diagonal

matrices. In fact, we now have

s

Cap (0) = fFlT(a),F,,)—w(a)lF,.u(a = 1(0) ¢4y (0) .
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Furthermore, if a > b, then cba(m) = 0, from which it follows that

cab(c) # 0. Thus at most the elements c¢ o) # 0. We have now

aa(
proven:

Theorem 13: The family {K, -k, x, ¥} is spanned by

eigenvectors of all T-operators.
For the family {K, -k, x,Whjf the results of the last para-
graph cannot be made more precise, since the scalar product of

two vectors from that family generally does not exist. We can

only state the following theorem:

Theorem 14: The family {K, -k, X,¥)}; has a basis such
that the representation matrices C(¢) of the operators T(0)
are all triangular.matrices. In particular, there exists in
the family {K, -k, x, W}O an eigenvector of all T-operators.
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CHAPTER LIX
THE DIRICHLET SERIES OF A FORM VECTOR

.
L)
O
L

|

§10. The Pormulation of the Dirichlet Series

So that the ensuing discussion will not be complicated by
- too many general obsefvations, most of the latter are collected
here at the beginning of the section

Let ¢ -s E, be a fixed system of basic unities of the

10 €02
field K: specifically, r = n-1, Let p traverse the numbers

1, 2, ..., ¥ and r the numbers 1, 2, ..., n, even when this is-
not explicitly stated. log z always denctes the principal value
of the natural logarithm, which is real for positive real =z.

The matrix .

1log 15{“1 ... log M

1 log!egz,% ... log leiﬁ)i
e eee e : (54)
1 log 15(1“)! “ee log Iswl
has an inverse because the absolute value of the deferminant
4, loglel, ..., loglel)
of (54) is nR, where R 1s the regulator of the field K. Let
the transpose of the inverse matrix for (54) be
!34()1) cSl) . eil)
@ 42 @
A (55)
eg') e(l") . ef,")
(v _ 1 _ .
Clearly, e T4 (W =1, 2, ..., n). The remaining elements of
(55) cannot be found so easily. We must use the equations
Se=0,  Selogle =20, (56)

' %+Z e log 16| = yps
I .
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where aﬂv, denotes the Kronecker delta. These equations prove
that (55) is the transpose of the reciprocals of (54).

With the guantities 1e’ we define the echaracters

X
for numhers v € Z. as follows:

A{u) = exp (—“212 m, Se, log !pl) ,
[4

where My, My, +.., M, are fixed natural numbers. If A(e) =1

for every unity e, let A be called a character of the first
order. A character which is not of the first order but which
satisfies the condition A(eo) = 1 for every totally positive

unity e, we call a character of the second order. The

0
remaining characters are called of the third order. Clearly
a character is of the fitst order if and only if all the

constants My, Mpy +v.5 M, are divisible by 4. The characters

of the first order are those defined by Hecke [10].

Let u be a positive varlable and let x

~
o
O
=

12 rres Xy be real

variables. Next let

ymﬂuexp(tl%'zeloglsel), (57)

or more explicitly

y = T/Eexp (4 Xz, log IE({’|) ]
°

Every n-tuple [sic] (u; X1s Xogseens xr) 1s thus assigned a number y

with conjugates y(v)(v =1, 2, ..., n). Equation (57) is easily
solved for (u; Xys Xps o enes Xr)5 we cbtain
=Ny, x,=-}5¢,logy. (58)

The funectlonal determinant of (57) is

aly™, ¥, ... ™)
3(ﬂ, x])'-’xf)

_—_-A(Tyﬂ, y'4log|£1],...,y-4log|gr[)-;i4r}g.
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Hence

l a(ﬁlzh-—‘pzr) — 1
@, @, 0™ &R

(57) and (58) can be analytlcally continued to the complex field.

A simple substitutlon leads to

Lemma 44: Let u; x ceea X be complex variables from

l’
the region [arg ul < cys Iﬁm xp_|< cg where cy,cg are two

sufficiently small positivé constants. Then’
- " '
= -'—L;i]]/; exp (4 X x,log lg,l)
. ¢ .
can be solved for (u; Xqs Kps eees X )

r

T 1 ©oT
U == —_— JR——
N[w“ s &= Se, Iog———:w!i-.
1 t

The limitation on the u; Xqs s X, used in Lemma 39 was

stipulated only for the purpose of avoiding difficulties 1in the
selection of the function branches of the logarithm and the

n-th root.

F)= T c@mZ(ew) for TET

ke

o
[

Now let

g

be a Fourier series with no constant elements which converges
in some Tw. Let the coefficients ¢{¢) depend only on {(0); let

¥be an admissable character and let

¢l(g) = O(N (0)).
If we set ) ‘
i ;ooom
fluszy, 2, ..., %) = F (1) wherey = "':u' ‘v exp (4 % x,loge,).

then £{ u; Xqs e Xr) is an ordinary pericdie function 1n
Xyseers Xpo so long as we choose u constant in the angular space

largff|< Cy- Since the function f{ u; Xqs »evs xr) is analytle /395
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in the variables x x,, Tfor fixed u, 1t is represented by

1> tees Xn
1ts Fourler series. The Fourier coefficients are then dependent
only on u, and they can be computed by the Euler-Fourier Integrals

. + +4 .
flu; 2) = j; j; j(u;zl_,...,x,)e‘z"‘f‘a"'eda:,...da:,.
Sy S .
On the left side, we have chosen the tharacter A defined

by fThe n-tuple my, M -» M, a8 the index of the Fourier

5
coefflcients. The advantage of thls notation is that the Fourier
coefflcients are no longer dependent on the choice of basis for
the unity group. We can now apply the Mellin transformation to
f(u; 2). The condition of Theorem I in reference 12 are
satisfied by the functions f{u; A ) in the angular space

larg u| < ¢y, so that
Gs; 4) =ff(u;ﬁ-)’d“1du with f{e 2> K41
. 0 ' -
leads to the inverse relation

_j(u;1)=2;h'/‘6’(s;2)u"ds - with [argul < ey, a > K41
) :
Thus the functions G(s, 1) are uniguely and reversibly assigned

to the function F.

We now compute the functions G(s,_}) explictly:
co'+*' +'}
G= [ [...[ Zec@p 3
' O~ —f.»

X exp (—2 JIV;S lulexp (4 3 z, log le|))
: £

X e 2T a1 g z,...dr,du.
Summation can be substituted for integration here because of the

absolute convergence of the infinite series. Furthermore, summa-
tion can be substituted for integration over u, as can be proven

by the application of a familiar lemma. In the equation
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Gs; )= 5 c@u)F(u) x
Il
1

P

w + A n ~IniEz m
xf f [ exp(—2x Yu Slalexp (42 =z, loglel)) e [ I
Y- -4 ¢

X u"’ldxll...dx,du -
we can arrange the series any way we llike because of the absolute

convergence. We set H = Wy & and sum first over all unities €,

then over a complete system of mod <e> - different totally positive

unities ¢ and flnally over & complete system of non-associated

O’
which satlisfies the initial conditions of summation. /396

numbers Mo
Then summation over € can be replaced by integration over the
full (xl, Xps =ons Xr) - space, and we get

G(s; 4) =(Z'Zc(3p) % (o 5g) X
i’

Y % +§ o® —2xiEx m
[ I ep(-2aVuslual exp @ 2 loglee ™" x
L v |

S cweldy L. da,.
Now set vnotA Fr

. ®
-y =VYuexp (4 Y = loglel)

and change the integral into an integral over the cocrresponding
y-region. In the process, the integral decomposes into a
product of n integrals. This product can be written as the norm

of an integral: ) .
Gl )=2 2 c@u ] sl g %

{F‘] n

© gmmniy (1= T e 50 d
NJ?L“'“P 23?””“%.

= 3 e@ul (Pofn)"i:} pd
© () 2 -
) L . . . _
. N e_("TI"'o'e) log 2.« kel NI‘(s-v “_‘; _Z'mee‘)
.
- 1

“(é;%’ﬂ @7 ot g %

@7 N i) A (roed N s = 5 _?meee).

L) . -
Introducing the abbreviation’

PN D 5 ).
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we get

Gs, A) = &R n s, A)(Z)' (g A) {Z 7 (g0) 2egh} 2 (£ta) AQpag) N {go) -
Ha, LY

The expression in braces is non-zero if and only if

1 (&) = 4 (2o) for all &>¢
In this case, we say that X and Xare related. Thus if X and X
are not related, then

G(s{l) =

The *» 's which are related to an admissible X constitute a residue
class of the group of all A's according to the group of all A's

¢f the first and second class.

In the ensuing discussion, we assume that X and X are

related, and we set

ZA(p) = Zlp) 2 ().

Then o /397
G )= E2 P, @y 2 0(0 ) 22 ) N (o)™
‘_.“i
(50 5‘) = .
S LA ( o ) I, ?)(%;c (@ 11o) T (8 prg) N (2 o)™

We set o=.3ﬁo and

D(s, })= ) clo) zA(a) N(o)*
@ :

oz dew

and we get

G(a,;.)z'%’—(gndn) I, z)xl(a 1y D(s, 7}.

The totality of the Dirichlet series D(s, A) uniquely determines

the function F, as each individual step is reversible.

We collect the results of this section 1n

- Lemma 45: Let
F(z) = 5"6(3P)x(#)80tf)

BEw@
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be a Fourier series with no constant elements. Let the
coefficients c(o) be dependent only on (0). Then the system
of Dirichlet series

| Dis, )= 7A@ X o) 7A(0)

: a5
where the character 5&}(0) is defined by
FA{0) = 7 (0) A (o)

and where x and A are related, is uniquely and reversibly

assigned to the function F(). The functions

6s, 1) = L2220 (

d \r _.
o ) Tis, ) D, (s, 2)

2'] nﬂ

can be expressed as integrals:

oo +§' < n,___ ‘
o= [ [ r{ g (s 5101
| L e '

xe T Ty —1dz | da du.



§11. The Dirichlet Series of a Form Veector
Let ﬁ be a form vector of type {Ka’ -k, X,W} . This vector

; . \ . K.
i5 uniquely and reversibly determined by the 2 b function branches

Fy, () - colw) z(e) for =¢T, (59)
The theory of the last section can be applied to the function

branches, yielding

Lemma 46: Let ¥ be a form vector of type {K, ~k,x , ¥} .

The Dirichlet series
D, (5:2) = zA(@%) X clo) 72 (o) N (o).

e iw '

(60)

correspond unlquely and reversibly to this form vector ﬁ.

The functions

G, (5 4) = (:’,:;;) (2,,d ,,) I'(s,2) D_{(s, 2}

can be represented as an 1ntegra1

@ (s; ) = ff f Fg, ('“’“‘“exp(«x ,logieel)—%(w)z(m)}- 61

—Enu-m T
Xxe e °Cw-ldx...dzdu. ;

The DlricblEE series converge in the nalf plane Re s 7 X
for the case X P 2 and in the half plane Re g > g + 1 for the

case where F i1s a cusp form vector. They also have a half plane

—_

of convergence for the case k = 1.

From the integral representation of the functions G%§s, A,
we see that the Dirichlet series Dﬁgs, A) are dependent in the

more narrow sense only on the class of w.

Theorem 15: The Dirichlet series Dw(s, A} can be
analytically contlnued into the entire plane. They define
integral functions so long as * # 1 or F is a cusp form
vector. In the special case where neither of these two
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conditlons is satisfied, a pole of the first order is to

te found at s = k. The analytic functicns is defined by the

Dirichlet series satisfy the funectional equation

Comr(k~8,2) = i 3 (%) p(0) 6, (s, 2) . /

w

Proof: Theorem 10 can also be wrltfen in the form

Fg, (i-imi!"ﬁ‘ exp (4 %:,' z, log Ise!)) — g lm) y (@)
= i 7 (0?) Plw) uk x
1

s 4] (D))

i ") B () v =) 2{5) — Cole) 2

(62)

We anslyze (61) at u = 1 and apply (62) to the finite partial

integral. We obtain
w +1 +}

Gale, 1) - lf ) { = _[ {Fxn (1' ”EZ” 'i/aexp@ z :c,l;)gleel)) — o) z(m)}x
—2xiZm,a,
xe e w-ldz,...dz, du +
1+ +4
+.‘ntz(¢52)§(m)f f f %
: Ry R \ ‘
X {Fx;" (i |r:;‘l| Vet exp (— 4%‘,’ z,log 1‘%])) — ¢ ( :;) ¥ (—l(;)} ™
. x‘e‘_hif%ryu‘""“drl...da:,.du-— |
~sm{m z )T (+) = (%) At 1) 5
with .!a (A) =,_-}*. . .-‘Z*e—hifme ar'?a:l:.-:,. co.dx= {(1) v::::mi -1

i

A e Sl T s "l Ve VR el Remira d Y

(63)

We have extracted a gﬁmmand from the finite integral and integrated

it separately. The existence of the summand implies the exist-

ence of the remaining integral. If we substltute

% ul, Ty — &y,

into the finite partial integral, we get
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o +1 +%
Yol B
&, (s, 1) =f f f Fxn(i%]/';& exp(dcz;teloglsel))—co} x
i G ¢
X e hwm"z"u'—ldzl dr. du+
o +‘; +!

-[—s""x(wz "P(‘“)/f f
b

X [Fx;l (i I—_liﬂ exp (42 x,log [&,| )) — ¢ (%) / (:lu-)} X

© —miX(—m) T -
Xe ¢ ¢ Cuk-s-ldg dx . du-—

-~ &(A) {.i"k ’-'.e(aﬁ] @(m) Co (-2-;) 7 (..:3‘) -]E_—_a+ €o (w) ¥ {®) %'_] .

The integrals are integral functions of s. Thus G,(s, » ) is
analytically continued into the entire plane. Gu,{s, *) is an
integral function so long as A ¥ 1 or ﬁ is a cusp form vector.
For the special case where neither of these conditions hold,
there is a pole of the first order at s =0 and s = k. The func-
tional equation of the functions qU(s, A) is obvious. Since the
r-functions are regular functions with no zeroces, the Dirichlet
series also define integer functions, aside from the Dirichlet
series Dy(s, 1). The latter may have a pole of order 1 at s = k.
The pole of the function Gu(s, 1) at s = 0 stems from a pole of
order n of the T-function; thus the Dirichlet series Dy(s, 1)

has a zero of order at least n-1 / at s = 0.

Let & he a character of the most restricted number class
group, that is, let |
¥(Z) plo) = p(Z o), plo) =1 for 0% L.

We set ) Alo)= (0} 7 (o)

S
=
<
o

for the case where a (¢) ?A(d) is dependent only on (o). The

|

Dirichlet series
D(s,A)=(§o(a)A(o)N(a)-' (64)

are then linearly equivalent to those of Eg. (48). Since we are
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summing over a complete system of non-associated numbers in (64),
the Dirichlet serles (64) possess an Euler product expansion

if the coefficients are multiplicative functions with respect to

relatively prime arguments.

The following theorem follows directly from Theorem 11 and
Theorem 12:
Theorem 16: The Dirichlet series D(s, % ) of a form

vector F of type {K, -k, X, ¥} possesses an Euler product

expansion if and only 1if ﬁ is a normalized eigenvector of

all T-operators.

A simple calculation yields the expliclt form of the Euler
product expanslcn:
Dl )= IT(1 —cle) Ale) N(e)™* + ¥ (o) N (gx-1-2)-1,

where the product extends over a complete system.of non-asscciated
prime numbers p. Thus we see that the Euler products are of

the canonical form in Hecke's sense.
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